Lattice Boltzmann model for simulation of the electric breakdown in liquids
نویسنده
چکیده
We investigate pre-breakdown hydrodynamic flows and initial stages of the electric breakdown in dielectric liquids. Three models are considered. The first one represents the purely thermal mechanism. Here, the liquid is simulated by a single-phase lattice Boltzmann equation (LBE) method. The temperature and the electric charge density are described by additional LBE components with zero mass. The permittivity is assumed to be constant. The conductivity increases with the increase of temperature. Electric force acting on a charged liquid is coupled with the hydrodynamics by the exact difference method [Kupershtokh, 2004; Kupershtokh & Medvedev, J. Electrostatics, 2006]. The last process in the model is the Joule heating. In the second model, a possible phase transition is included. To simulate a fluid with an arbitrary two-phase equation of state (such as van der Waals or Carnahan-Starling EOS), the method proposed by Kupershtokh is used [Kupershtokh, 2005; Kupershtokh et al., 2007]. The conductivity increases with the decrease of the fluid density. When the voltage is applied, the charge injection from the surface of electrode begins. The electric force acting on the charged fluid produces negative pressure near electrode leading to a phase transition (evaporation). Conductivity increases leading to enhanced evaporation and growth of a conducting bubble. Thus, the bubble mechanism of breakdown is realized. The last model includes the density-dependent permittivity. For nonpolar liquids, the dependence is given by the Clausius – Mosotti law. In this case, several additional processes are possible. First, dielectrics is pulled into regions with higher electric field which produces rarefaction waves. Second, an anisotropic instability [Kupershtokh & Medvedev, Phys. Rev. E, 2006] can develop producing low-density channels along the electric field. Since these channels can easily become conducting, another mechanism of the breakdown is realized.
منابع مشابه
Simulation of Micro-Channel and Micro-Orifice Flow Using Lattice Boltzmann Method with Langmuir Slip Model
Because of its kinetic nature and computational advantages, the Lattice Boltzmann method (LBM) has been well accepted as a useful tool to simulate micro-scale flows. The slip boundary model plays a crucial role in the accuracy of solutions for micro-channel flow simulations. The most used slip boundary condition is the Maxwell slip model. The results of Maxwell slip model are affected by the ac...
متن کاملEvaluation of two lattice Boltzmann methods for fluid flow simulation in a stirred tank
In the present study, commonly used weakly compressible lattice Boltzmann method and Guo incompressible lattice Boltzmann method have been used to simulate fluid flow in a stirred tank. For this purpose a 3D Parallel code has been developed in the framework of the lattice Boltzmann method. This program has been used for simulation of flow at different geometries such as 2D channel fluid flow an...
متن کاملLattice Boltzmann Simulation of Deformation and Breakup of a Droplet under Gravity Force Using Interparticle Potential Model
Abstract In this paper interparticle potential model of the lattice Boltzmann method (LBM) is used to simulate deformation and breakup of a falling droplet under gravity force. First this model is applied to ensure that the surface tension effect is properly implemented in this model. Two tests have been considered. First, it has been checked an initial square drop in a 2D domain can freely def...
متن کاملNumerical Simulation of Fluid Flow Past a Square Cylinder Using a Lattice Boltzmann Method
The method of lattice boltzmann equation(LBE) is a kinetic-based approach for fluid flow computations. In the last decade, minimal kinetic models, and primarily the LBE, have met with significant success in the simulation of complex hydrodynamic phenomena, ranging from slow flows in grossly irregular geometries to fully developed turbulence, to flow with dynamic phase transitions. In the presen...
متن کاملLattice Boltzmann simulation of EGM and solid particle trajectory due to conjugate natural convection
The purpose of this paper is to investigate the EGM method and the behavior of a solid particle suspended in a twodimensional rectangular cavity due to conjugate natural convection. A thermal lattice Boltzmann BGK model is implemented to simulate the two dimensional natural convection and the particle phase was modeled using the Lagrangian–Lagrangian approach where the solid particles are treat...
متن کامل